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Application of Dilute Solution Theories 
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synopsis 
Experimental data on dilute solutions of poly(hexene-1), obtained from viscosity, 

osmometry, and light scattering in various solvents, previously reported, were treated 
and compared with various hydrodynamic theories of linear polymers. It wa.~ found 
that poly(hexene-1) can best be described by the model of Flory-Fox. Furthermore, the 
data were found to conform to the treatment of Kinsinger and Ballard for nonpolar 
polymers in the a-olefin series in the unperturbed state. 

INTRODUCTION 
Various dilute solution properties of poly(hexene-1) in a number of sol- 

vents were previously reported' by the authors on fractionated samples 
studied from phase equilibria, osmometry, viscometry, and light scattering. 
Molecular weight distribution functions were determined, Mark-Houwink 
relationships in good and poor solvents established, and weight-average 
root-mean-square end-to-end distances, (?2)w1'2, of the poly(hexene-1) 
fractions, corrected for polydispersity, were calculated from light scattering 
data. 

It is the purpose of this paper to treat the experimental data obtained 
on poly(hexene-1) fractions previously reported by us in terms of various 
dilute solution theories. The unperturbed chain dimensions are cstimated 
according to these theories both in good and theta solvents, and compared 
with those calculated by assuming free rotation from fixed bond length 
(1.54 k) and bond angle (lO9.S0). Finally, the unperturbed dimensions of 
poly(hexene-1) are compared with those of other poly(a-olefins) in attempt- 
ing to establish the effect of the pendent groups of poly(a-olefins) on the 
unperturbed dimensions. 

EXPERIMENTAL 
Experimental procedures for fractionation, osmometry , viscometry, phase 

equilibria, and light scattering of poly(hcxenc-1) were described in an 
earlier paper. 
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RESULTS 
Intrinsic viscosities [r]  I in cyclohexane, tetrahydrofuran (THF) , toluene, 

and phenetole, and weight-average molecular weights ATw obtained from 
light scattering were reported in an earlier paper.' Table I summarizes the 

TABLE I 
Molecular Weights B,,, and Intrinsic Viscosities of 

Poly(hexene-1) Fractions 

[rl, w g  Frat* Dm X 
tion no. 10-4 Cyclohexane THF Toluene Phenetole (a,& 

4 143 4.50 3.71 3.32 1.16 1.42 
6 90.9 3.80 2.95 2.70 0.975 1.40 
7 62.5 3.06 2.38 2.15 0.822 1.38 
9 39.7 2.28 1.92 1.70 0.680 1.36 

13 21.7 1.50 1.30 1.09 0.525 1.28 
15 15.9 1.14 0.89 0.92 0.365 1.36 
18 11.9 0.87 2.95 0.66 0.340 1.25 
21 8.13 0.665 0.53 0.48 0.265 1.22 

[ r ] ]  and nW values for several fractions pertinent to the discussion of this 
paper. The following Mark-Houwink relationships were established by 
the method of least squares': 

In cyclohexane, 25"C, 

= 2.05 x 1 0 - 4 ~ 7 ~ 0 . 7 2  (1) 

(2) 

(3) 

(4) 

In THF, 25OC, 

[ r ] ]  = 2.32 X 10-4~w0*69 

[r]  J = 2.2s x 1 0 - 4 ~ ~ 0 . 6 9  

[ r ] ] O  = 9.57 X 10-4~w0.6 

In toluene, 25"C, 

In phenetole, 61.3"C1 

DISCUSSION 
In our earlier paper, ' the universal constant 9 was calculated from vis- 

cosity and light scattering data. An average value of 2.71 X lo2' was ob- 
tained, which is in good agreement with the accepted average value of 
2.65 X 1021 from both experimental and theoretical calculations. The 
value of 9 obtained in this work establishes poly(hexene-1), in the solvenb 
studied, as a random coil. Thus, the data can be treated in accordance 
with various hydrodynamic theories of linear polymers in dilute solution. 

Debye and Bueche2 introduced the pearl-necklace model in which the 
polymer chain may be regarded as a sequence of beads connected to each 
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TABLE I1 
Comparison of (TW2)'/' of Poly(hexene-1) Fractions 
Calculated in Accordance with Various Theories 

(rW2)'I2 (root-mean-square end-to-end distance in toluene at 25OC), A 
Flory-Fox 

Fraction Kirkwood- (a = 2.65 
no. Experimental Debye-Bueche Riseman Peterlin x 1021) 

4 
6 
7 
9 

13 
15 
18 
21 

1192.5 
937.4 
816.3 
610.5* 
446.9 
3 7 1 . 9  
310.2 
258. 58 

1013.3 
813.3 
665.3 
528.9 
372.8 
317.7 
276.7 
204.5 

1354.2 
1086.8 
889.1 
706.7 
496.7 
424.5 
339.7 
274.3 

1309.5 
1044.1 
865.8 
690.0 
501.1 
436.6 
377.8 
312.2 

1222.4 
981.1 
802.6 
638.0 
448.5 
383.3 
306.7 
247.5 

8 Calculated from (fW2)'/' = 0.56 X &0.64. 

other by a string, in which hydrodynamic resistance to the flow of solvent 
is offered by the beads but not the string. The model assumes spherical 
symmetry. 

Kirkwood and Riseman3 used basically the same model as Debye and 
Bueche, with the added refinement that the polymer segments were no 
longer considered to be distributed evenly throughout the volume of the 
sphere, but were statistically distributed about the center of mass. 

Peterlin4 used a purely statistical coil made up of chain elements such 
that the orientation of one element was independent of the orientation of 
neighboring elements. 

Flory and  FOX^^^ treated the polymer molecules rn hydrodynamic equiva- 
lent spheres. They assumed that both the density distribution with re- 
spect to the center of gravity and the distribution of the end-to-end dis- 
tance are Gaussian and that spherical symmetry exists. 

Table I1 shows experimental values for (fw2)'/' in toluene a t  25"C, to- 
gether with values calculated in accordance with the Flory-Fox theory using 
2.65 X 1021 for ip. Also appearing in this table are the values of (Fw2)'/' 
calculated from the other hydrodynamic models mentioned above. It is 
evident that the experimental and calculated values are in good agreement 
and that the Flory-Fox model appears to best represent poly(hexene-1) 
in toluene at  25°C. 

The unperturbed chain dimension can be calculated from the perturbed 
one by using the relation 

(Y = [(F">/(P">O]'/Z (5) 

where a! is the statistical expansion factor. It is the ratio of root-mean- 
square (rms) end-to-end distance in a good solvent to the corresponding 
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TABLE I11 
Values of ( f12): /? and [ (FW2)o/Gwl ‘1, &s Determined by 

Light Scattering in Toluene at 25OC 

tion Gw x a,, x M,] ‘I2 
Frac- [@?)a/ 

no. 10-(s 10-(s I?,/@,, (~~2), ’ /2; i  ( (Yn)td ( fw2)01/2,  A x 1010 

4 143 77.3 1.85 
6 90.9 49.35 1.84 
7 62.5 42.0 1.49 
9 39.7 29.15 1.36 

13 21.7 19.56 1.11 
15 15.9 14.70 1.08 
17 11.9 10.76 1.11 
21 8.13 7.44 1.09 

1440.8 
1131.3 
940.1 

468.5 

352.2 
- 

1.42 
1.40 
1.38 
1.36 
1.28 
1.36 
1.25 
1.22 

839.8 
669.6 
591.5 
448.9 
349.1 
273.5 
248.2 
211.9 
average 

70.23 
70.23 
74.82 
71.24 
74.95 
68.60 
71.94 
74.32 
72.04 

* Experimental values from reference 1. 

distance in a theta solvent. An alternate form for the expansion factor 
has been defined as follows: 

a* = [r]I/[1718. (6) 

a* = aa. (7) 

Flory and Foxs proposed a relation between a,, and a : 

Table I11 shows the unperturbed dimension (Vm2)01/2 and [ ( ~ m 2 ) ~ / ~ m 1 ’ ~ *  
calculated from light scattering data of poly(hexene-1) fractions in dilute 
toluene solution. An average value of 72.04 X 10-lo was obtained for the 
characteristic ratio [(Tm2)0/ATw]”2. This ratio could also have been cal- 
culated from K in the Mark-Houwink equation under theta conditions. 
However, this method is often limited by the difficulty in finding appropri- 
ate theta solvents. It is, therefore, highly desirable to use a method for 
estimating the unperturbed dimension without the need for theta solvent 
experiments. Several methods have been proposed in the literature for this 
purpose. Flory, Fox, and Schaefgen6s7 were the first to put forward such 
a method: their equation was 

(8) 

A plot of [q]”/aMM”/a versus M [ q ] - l  should yield a linear relationship from 
which K may be obtained from the intercept and CT, from the slope. The 
Unperturbed root-mean-square end-to-end distance (Qz)0’/’ can then be ob- 
tained using the following equations: 

[,]‘/aM--’/: = K’/a + Ks/aCTM[q]-l. 

K = @[(72)O/M]’/1. (9) 

An alternate method, applicable to polymers dissolved in “good” and 
“poor” solvents, was proposed by Kurata and Stockmaye? based on the 
solution theory of Kurata, Stockmayer, and Roig.9 Their relationship is 

[q]l/aMM’L/’ = K*Ia + 0.36~oB~y(or,)M*/’[q]-’”)  (10) 
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Fig. 1. Flory-Fox-Schaefgen plots (eq. 8) for polyhexene-1 fractions in various solvents. 

where aq = { [q] / [q]18)1/* ,  q(aq) = 8aq3(3aq2 +' l)-a'z, and B is parameter 
measuring the polymer-solvent interactions. A method which appears to 
be simpler was proposed by Burchard'o and by Stockmayer and Fixman." 
The latter authors suggested that the equation 

[q]M-*/'  = K + 0.51@J3M1" ( 1 1 )  

would be useful for all solvent-polymer systems. 
KurataI2 arrived a t  the following expression : 

Inagaki, Suzuki, and 

[q]4/kMM-'/k = 0.786K4/' + 0.950K4'k~2/3M1/8 (12) 
where k = 0.33B [M/(P)O]'/'. These authors point out that their equa- 
tion is a good method for determining K for polymers in good solvent sys- 
tems. A modified form of an equation proposed by BohdaneckyI3 was sug- 
gested by C 0 ~ i e . l ~  The equation 

[q]M-'/' = O(c)@O-'K + 0.9166@(r)@~-'Kk7~10M1'2 (13) 
having a solvent-dependent factor modifying K should be valid both in good 
and theta solvent. Here, @(E) = Oo(l - 2.636 + 2.86a2) ; and e is given by 
f 2  = K,M'+' and is related to 'a,' the exponent in the Mark-Houwink 
equation, by a = [(l + 3 r ) / 2 ] .  

Figures 1 through 5 show the plots of these methods. It can be seen 
from these plots that our theta-solvent data agree with the proposed ex- 
pressions over the range examined. However, for good solvents devia- 

Thus, 'Po = a(.) in a theta solvent. 
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Fig. 2. KurataStockmayer plots (eq. 10) for polyhexene-1 fractions in various solvents. 
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Fig. 3. Stockmayer-Fhan plots (eq. 11) for polyhexene-1 fractions in various solvents. 
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Fig. 4. Inagaki-Suzuki-Kurata plots (eq. 12) for polyhexene-1 fractions in various sol- 
vents. 
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Fig. 5. Modified Bohdanecky plots (eq. 13) for polyhexene-1 fractions in various solvents. 
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TABLE I V  
Comparison of [ ( F , & / ~ , J  'la for Poly(hexene-1) in Different Solvents in 

Accordance with Various Theories 

[ ( fW"O/ a4 '/2 

Method Solvent K X lo8 X lO lo  T, "C Remarks 

Peterlin 
Flory-Fox 
Flory-Fox-Schaefgen 

Stockmayer-Fixman 

Kurata-Stockmayer 

InagakiSuguki-Kurata 

Modified Bohdanecky 

Experimental 

phenetole - 
phenetole 0.957 
phenetole 0.955 
toluene 1.25 
THF 1.05 
cyclohexane 1.22 
phenetole 0.981 
toluene 0.999 
THF 0.919 
cyclohexane 1.27 
phenetole 0.963 

toluene 0.899 
THF 0.906 
cyclohexane 1.24 
phenetole - 
toluene 1.23 
THF 1.16 
cyclohexane 1.32 
phenetole 0.963 
toluene 1.23 
THF 1.12 
cyclohexane 1.31 
toluene 

70.53 
71.21 
71.17 
77.85 
73.23 
77.14 
71.83 
72.37 
70.25 
78.31 
70.24 

68.64 
68.81 
76.41 

77.33 
75.82 
79.29 
71.37 
77.33 
75.03 
79.13 
72.04 

- 

61.3 
61.3 
61.3 
25.0 
25.0 
25.0 
61.3 
25.0 
25.0 
2.5.0 
61.3 

25.0 
25.0 
25.0 
61.3 
25.0 
25.0 
25.0 
61.3 
25.0 
25.0 
25.0 
25.0 

use corrected 
value of 
2.78 X 
1021 

not applicable 

Table I11 

TABLE V 
Comparison of Unperturbed Dimensions (?w2):/z of Poly(hexene-1) Fractions 
in Phenetole as Determined by Various Dilute Polymer Solution Theories" 

Fraction no. (fw2):/z, d 
4 6 7 9 13 15 18 21 

Experimentalb 
Debye-Bueche 
Kirkwood-ltiseman 
Peterlin 
Flory-Fox 
Flory-FoxSchaefgen 
Stockmayer-Fixman 
Kurata-Stockmayer 
Modified Bohdanecky 

839.8 
564.2 
832.6 
843.4 
851.5 
851.1 
858.9 
839.9 
853.4 

699.6 591.5 448.9 
457.9 381.8 308.1 
675.6 563.3 454.6 
672.4 557.6 444.4 
678.9 653.0 448.7 
678.5 562.7 448.4 
684.8 567.9 452.6 
669.7 555.3 442.6 
680.4 564.3 449.7 

349.1 
231.1 
342.5 
328.5 
331.7 
331,5 
334.6 
327.2 
332.4 

273.5 248.2 
184.7 163.6 
272.3 241.5 
281.2 243.4 
283.9 245.7 
283.8 245.5 
286.4 247.8 
280.0 242.3 
284.6 246.2 

211.9 
132.7 
195.7 
201.1 
203.0 
202.9 
204.8 
200.3 
203.5 

~~ ~~ ~~ ~~ 

8 For weight-average molecular weights of fractions, see Table I. 
1 

Calculated from equation (?,2)'/2 = - (9)1/p. 
Q 
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4 
6 
7 
9 

13 
1 5 
18 
21 

0.3361 
0.3361 
0.3361 
0.3361 
0.3361 
0.3361 
0.3361 
0.3361 

401.9 
320.4 
265.7 
211.8 
156.6 
134.0 
116.0 
95.8 

839.8 
669.6 
591.5 
448.9 
349.1 
273. -5 
248.2 
211.9 

1192.5 
937.4 
816.3 
610.5 
446.9 
371.9 
310.2 
258.5 

average 

2.09 2.97 
2.09 2.93 
2.23 3.07 
2.12 2.88 
2.23 2.85 
2.04 2.78 
2.14 2.67 
2.21 2.70 
2.14 2.86 

tions from linearity occur a t  high values of the abscissae. The extrapola- 
tions were carried out by a least-squares method, and results for K are 
listed in Table IV together with characteristic ratios (F0~/ll4)'/'. These 
ratios were calculated according to eq. (9) by using a value of 2.65 X 1021 
for 9, except in the case of Kurata and Stockmayers for which the value of 
2.75 X loz1 was applied to reflect the heterogeneity of the polymer fraction. 
Excellent agreement was found among various theories in the theta solvent 
phenetole (see Table IV). In good solvent, the characteristic ratios are 
within 10% of each other. Table V shows the comparison of experimental 
and calculated values of unperturbed chain dimensions of some poly (hex- 
ene-1) fractions in phenetole along with the values calculated from Debye- 
Bueche and Kirkwood-Riseman theories. It is interesting to compare 
(Fw2):/' with (Y~~)~; / ' ,  calculated by assuming free rotation of the bond of 
length 1.54 8 and the fixed bond angle 109.5O. Accordingly, Table VI 
shows such comparison along with the values of [(Fw2)/(rw2)0f]'/". It can 
be seen that the root-mean-square end-to-end distances for poly (hexene-1) 
are 2.S6 times as large in a nonideal solvent, toluene, and 2.14 as large in an 
ideal solvent, phenetole. 

It is also of interest to compare the unperturbed chain dimensions of 
poly (hexene-1) with several other poly (a-olefins) . A comparison was 
made using the ratio of (Fw2)01/2  to the square root of the degree of polym- 
erization. Table VII shows the results of this comparison. These cal- 
culations indicate that the dimensions are dependent on the pendent group 
and are proportional to their size. Thus, with respect to the pendent 
group, the unperturbed average end-to-end dimensions fall in the order 
phenyl > hexyl > butyl > propyl > ethyl > dimethyl > methyl, if we 
ignore the value of polypropylene obtained by Danusso and A i a r a g l i ~ ~ ~  
but accept that found by Kinsinger and Hughes22 in diphenyl ether. 

Kurata and Stockmayers have found a smooth correlation between 
u = [(Fw2>/(Fw2)of]1", the ratio of root-mean-square (rms) unperturbed 
dimensions to the rrns freely rotating dimension, and the molar volume V ,  
of the pendent group. For nonpolar polymer in the a-olefin series, this is a 
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VX 
Fig. 6. Plot of steric factor u vs. molar volume of pendent group 8 ,  a t  To for some poly- 

(a-olefins). 

monotonically increasing curve in u as V ,  increases. Kinsinger and Bal- 
lard15 showed that the U-value obtained for poly(octene-l) is in excellent 
agreement with the extrapolated limiting curve for the nonpolar, linear 
poly(a-olefins). Reproducing the plot of Kinsinger and Ballard, we see 
that the poly(hexene-1) falls on this line in accordance with Kurata and 
Stockmayer's calculation, using the computed values of u = 2.09 and V ,  = 
111 for poly(hexene-1) polymer (Fig. 6). Included also is the point for 
poly(pentene-l),'g with computed values u = 1.95 and V ,  = 82. This 
suggests that the large groups cause the polymer to be more extended due to 
a higher probability of chain interference, i.e., more hindrance to free 
rotation, so that the dimensions of poly(ar-olefins) are proportional to the 
size of the bulky group on the side chain. 

The authors wish to express their gratitude to the National Science Foundation for 
their support of this work. 
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